Biocompatible PANI-Encapsulated Chemically Modified Nano-TiO2 Particles for Visible-Light Photocatalytic Applications

生物相容性 PANI 封装化学改性纳米 TiO2 粒子,可用于可见光光催化应用

阅读:7
作者:Nefeli Papadopoulou-Fermeli, Nefeli Lagopati, Maria-Anna Gatou, Evangelia A Pavlatou

Abstract

Polyaniline (PANI) constitutes a very propitious conductive polymer utilized in several biomedical, as well as environmental applications, including tissue engineering, catalysis, and photocatalysis, due to its unique properties. In this study, nano-PANI/N-TiO2 and nano-PANI/Ag-TiO2 photocatalytic composites were fabricated via aniline's oxidative polymerization, while the Ag-and N-chemically modified TiO2 nanopowders were synthesized through the sol-gel approach. All produced materials were fully characterized. Through micro-Raman and FT-IR analysis, the co-existence of PANI and chemically modified TiO2 particles was confirmed, while via XRD analysis the composites' average crystallite size was determined as ≈20 nm. The semi-crystal structure of polyaniline exhibits higher photocatalytic efficiency compared to that of other less crystalline forms. The spherical-shaped developed materials are innovative, stable (zeta potential in the range from -26 to -37 mV), and cost-effective, characterized by enhanced photocatalytic efficiency under visible light (energy band gaps ≈ 2 eV), and synthesized with relatively simple methods, with the possibility of recycling and reusing them in potential future applications in industry, in wastewater treatment as well as in biomedicine. Thus, the PANI-encapsulated Ag and N chemically modified TiO2 nanocomposites exhibit high degradation efficiency towards Rhodamine B dye upon visible-light irradiation, presenting simultaneously high biocompatibility in different normal cell lines.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。