Creating Complex Polyacrylamide Hydrogel Structures Using 3D Printing with Applications to Mechanobiology

利用 3D 打印技术创建复杂的聚丙烯酰胺水凝胶结构并应用于机械生物学

阅读:9
作者:Yu-Li Wang, David Li

Abstract

Due to its favorable physical and chemical properties, including chemical inertness, low fouling by biological molecules, high porosity and permeability, optical transparency, and adjustable elasticity, polyacrylamide has found a wide range of biomedical and non-biomedical applications. To further increase its versatility, this communication describes a simple method, using readily available reagents and equipment, for 3D printing polyacrylamide hydrogels at a resolution of 100-150 μm to create complex structures. As a demonstration of the application, the method is used for creating a lab-on-a-chip cell culture surface with micropatterned stiffness, which then leads to the discovery of stiffness-guided collective cell segregation distinct from durotaxis. The present technology is expected to unleash new applications such as the construction of biocompatible elastic medical devices and artificial organs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。