Genetic analysis challenges the presence of Ixodes inopinatus in Central Europe: development of a multiplex PCR to distinguish I. inopinatus from I. ricinus

基因分析质疑中欧地区是否存在硬蜱:开发多重 PCR 方法以区分硬蜱和蓖麻硬蜱

阅读:7
作者:Kristyna Hrazdilova, Ondrej Danek, Alena Hrbatova, Barbora Cervena, Eva Noskova, Peter Adamik, Jan Votypka, Andrei Daniel Mihalca, Mechouk Noureddine, David Modry, Ludek Zurek3

Background

Ixodes ricinus is an important vector of several pathogens, primarily in Europe. Recently, Ixodes inopinatus was described from Spain, Portugal, and North Africa and then reported from several European countries. In this study, a multiplex polymerase chain reaction (PCR) was developed to distinguish I. ricinus from I. inopinatus and used in the surveillance of I. inopinatus in Algeria (ALG) and three regions in the Czech Republic (CZ).

Conclusions

We developed a multiplex PCR method based on the TROSPA gene to differentiate I. ricinus and I. inopinatus. We demonstrate the lack of evidence for the presence of I. inopinatus in Central Europe and propose that previous studies be re-examined. Mitochondrial markers are not suitable for distinguishing I. inopinatus from I. ricinus. Furthermore, our data indicate that I. inopinatus and I. ricinus can hybridize, and the hybrids can survive in Europe.

Methods

A multiplex PCR on TROSPA and sequencing of several mitochondrial (16S rDNA, COI) and nuclear markers (TROSPA, ITS2, calreticulin) were used to differentiate these two species and for a subsequent phylogenetic analysis.

Results

Sequencing of TROSPA, COI, and ITS2 separated these two species into two subclades, while 16S rDNA and calreticulin could not distinguish I. ricinus from I. inopinatus. Interestingly, 23 nucleotide positions in the TROSPA gene had consistently double peaks in a subset of ticks from CZ. Cloning of these PCR products led to a clear separation of I. ricinus and I. inopinatus indicating hybridization and introgression between these two tick taxa. Based on a multiplex PCR of TROSPA and analysis of sequences of TROSPA, COI, and ITS2, the majority of ticks in CZ were I. ricinus, no I. inopinatus ticks were found, and 10 specimens showed signs of hybridization. In contrast, most ticks in ALG were I. inopinatus, four ticks were I. ricinus, and no signs of hybridization and introgression were detected. Conclusions: We developed a multiplex PCR method based on the TROSPA gene to differentiate I. ricinus and I. inopinatus. We demonstrate the lack of evidence for the presence of I. inopinatus in Central Europe and propose that previous studies be re-examined. Mitochondrial markers are not suitable for distinguishing I. inopinatus from I. ricinus. Furthermore, our data indicate that I. inopinatus and I. ricinus can hybridize, and the hybrids can survive in Europe.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。