Beyond endocrine resistance: estrogen receptor (ESR1) activating mutations mediate chemotherapy resistance through the JNK/c-Jun MDR1 pathway in breast cancer

超越内分泌耐药性:雌激素受体 (ESR1) 激活突变通过乳腺癌中的 JNK/c-Jun MDR1 通路介导化疗耐药性

阅读:12
作者:Marwa Taya, Keren Merenbakh-Lamin, Asia Zubkov, Zohar Honig, Alina Kurolap, Ori Mayer, Noam Shomron, Ido Wolf, Tami Rubinek0

Conclusions

Taken together, these data indicate that ESR1 mutations confer chemoresistance through activation of the JNK/MDR1 axis. These finding suggest a novel treatment option for BC tumors expressing ESR1 mutations.

Methods

MCF-7 cells harboring Y537S and D538G ESR1 mutations (mut-ER) were employed to study the response to chemotherapy drugs, paclitaxel and doxorubicin, using viability and apoptotic assay in vitro, and tumor growth in vivo. JNK/c-Jun/MDR1 pathway was studied using qRT-PCR, western-blot, gene-reporter and ChIP assays. MDR1 expression was analyzed in clinical samples using IHC.

Purpose

All patients with metastatic breast cancer (MBC) expressing estrogen receptor-α (ESR1) will eventually develop resistance to endocrine therapies. In up to 40% of patients, this resistance is caused by activating mutations in the ligand-binding domain (LBD) of ESR1. Accumulating clinical evidence indicate adverse outcomes for these patients, beyond that expected by resistance to endocrine therapy. Here we aimed to study the role of ESR1 mutations in conferring chemoresistance in BC cells.

Results

Cell harboring ESR1 mutations displayed relative chemoresistance compared to WT-ER, evidenced by higher viability and reduced apoptosis as well as resistance to paclitaxel in vivo. To elucidate the underlying mechanism, MDR1 expression was examined and elevated levels were observed in mut-ER cells, and in clinical BC samples. MDR1 is regulated by the c-Jun pathway, and we showed high correlation between these two genes in BC using TCGA databases. Accordingly, we detected higher JNK/c-Jun expression and activity in ESR1-mutated cells, as well as increased occupancy of c-Jun in MDR1 promoter. Importantly, JNK inhibition decreased MDR1 expression and restored sensitivity to chemotherapy. Conclusions: Taken together, these data indicate that ESR1 mutations confer chemoresistance through activation of the JNK/MDR1 axis. These finding suggest a novel treatment option for BC tumors expressing ESR1 mutations.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。