In vitro and in vivo proves of concept for the use of a chemically cross-linked poly(ester-urethane-urea) scaffold as an easy handling elastomeric biomaterial for bone regeneration

体外和体内实验证明了使用化学交联聚(酯-氨基甲酸酯-脲)支架作为骨再生的易于操作的弹性生物材料的概念

阅读:6
作者:Géraldine Rohman, Sylvie Changotade, Sophie Frasca, Salah Ramtani, Anne Consalus, Credson Langueh, Jean-Marc Collombet, Didier Lutomski

Abstract

Bone loss can occur as a result of various pathologies, traumas and injuries and poor bone healing leads to functionally debilitating condition, loss of self-sufficiency and deterioration in life quality. Given the increasing incidence of facial trauma and the emergence of new procedural techniques, advanced scaffolds are currently developed as substitutes for bone tissue engineering. In this study, we investigated the capability of a chemically cross-linked ε-caprolactone-based poly(ester-urethane-urea) (PCLU) scaffold to support bone regeneration. In vitro assays demonstrated that PCLU scaffolds could be colonized by cells through direct cell seeding and cell migration from outside to scaffold inside. Moreover, PCLU scaffolds could provide a suitable environment for stem cells proliferation in a 3D spatial arrangement, and allowed osteogenic differentiation under appropriate induction. In vivo results revealed the osteogenic properties of PCLU scaffolds through a drilled-hole femoral bone defect repair improvement in rats. Using histology and microtomography analysis, we showed that PCLU scaffolds fit well the bone cavity and were eventually entrapped between the newly formed trabeculae. Finally, no sign of inflammation or rejection was noticed. We envision that PCLU scaffolds can provide the clinicians with a substitute having appropriate characteristics for the treatment of bone defects.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。