DNA Area and NETosis Analysis (DANA): a High-Throughput Method to Quantify Neutrophil Extracellular Traps in Fluorescent Microscope Images

DNA 区域和 NETosis 分析 (DANA):一种定量荧光显微镜图像中中性粒细胞胞外陷阱的高通量方法

阅读:9
作者:Ryan Rebernick, Lauren Fahmy, Christopher Glover, Mandar Bawadekar, Daeun Shim, Caitlyn L Holmes, Nicole Rademacher, Hemanth Potluri, Christie M Bartels, Miriam A Shelef

Background

Neutrophil extracellular traps (NETs), extracellular structures composed of decondensed chromatin and antimicrobial molecules, are released in a process called NETosis. NETs, which are part of normal host defense, have also been implicated in multiple human diseases. Unfortunately,

Conclusions

DANA provides a means to quantify DNA decondensation and the frequency of NET-like structures using a variety of different fluorescent markers in a rapid, reliable, simple, high-throughput, and cost-effective manner making it optimal to assess NETosis in a variety of conditions.

Results

To better quantify NETs and NET-like structures, we created DNA Area and NETosis Analysis (DANA), a novel ImageJ/Java based program which provides a simple, semi-automated approach to quantify NET-like structures and DNA area. DANA can analyze many fluorescent microscope images at once and provides data on a per cell, per image, and per sample basis. Using fluorescent microscope images of Sytox-stained human neutrophils, DANA quantified a similar frequency of NET-like structures to the frequency determined by two different individuals counting by eye, and in a fraction of the time. As expected, DANA also detected increased DNA area and frequency of NET-like structures in neutrophils from subjects with rheumatoid arthritis as compared to control subjects. Using images of DAPI-stained murine neutrophils, DANA (installed by an individual with no programming background) gave similar frequencies of NET-like structures as the frequency of NETs determined by two individuals counting by eye. Further, DANA quantified more NETs in stimulated murine neutrophils compared to unstimulated, as expected. Conclusions: DANA provides a means to quantify DNA decondensation and the frequency of NET-like structures using a variety of different fluorescent markers in a rapid, reliable, simple, high-throughput, and cost-effective manner making it optimal to assess NETosis in a variety of conditions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。