Upregulated spinal histone deacetylases induce nociceptive sensitization by inhibiting the GABA system in chronic constriction injury-induced neuropathy in rats

上调脊髓组蛋白去乙酰化酶通过抑制大鼠慢性压迫性损伤引起的神经病变中的 GABA 系统来诱导伤害性敏化

阅读:6
作者:Zhi-Hong Wen, Nan-Fu Chen, Hao-Jung Cheng, Hsiao-Mei Kuo, Pei-Yu Chen, Chien-Wei Feng, Zhi-Kang Yao, Wu-Fu Chen, Chun-Sung Sung

Conclusions

HDAC upregulation might induce nociception through GAD65 and GABA inhibition in CCI-induced neuropathy. These findings strongly suggest that HDACs negatively regulate inhibitory neurotransmitters, constituting a potential therapeutic strategy for an epigenetic approach to manage NP.

Methods

Male Wistar Rat with chronic constriction injury (CCI)-induced peripheral neuropathy and HDAC inhibitor, panobinostat, was administrated intrathecally. We performed quantitative real-time polymerase chain reaction (RT-qPCR), western blot, and immunohistochemical analysis of lumbar spinal cord dorsal horn and nociceptive behaviors (thermal hyperalgesia and mechanical allodynia) measurements.

Results

Herein, RT-qPCR analysis revealed that spinal hdac3, hdac4, and hdac6 were upregulated in CCI rats. Western blotting and immunofluorescence staining further confirmed that HDAC3, HDAC4, and HDAC6 were significantly upregulated, whereas GABA and its synthesis key enzyme glutamic acid decarboxylase (GAD) 65 were dramatically downregulated. Intrathecal panobinostat attenuated nociceptive behavior and restored the downregulated spinal GAD65 and GABA expression in CCI rats. Conclusions: HDAC upregulation might induce nociception through GAD65 and GABA inhibition in CCI-induced neuropathy. These findings strongly suggest that HDACs negatively regulate inhibitory neurotransmitters, constituting a potential therapeutic strategy for an epigenetic approach to manage NP.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。