Advanced and multifaceted stability profiling of the first-line antidiabetic drugs metformin, gliclazide and glipizide under various controlled stress conditions

对一线抗糖尿病药物二甲双胍、格列齐特和格列吡嗪在各种受控应激条件下的先进和多方面稳定性分析

阅读:4
作者:Ahmed Gedawy, Hani Al-Salami, Crispin R Dass

Abstract

The antidiabetic drugs metformin, gliclazide and glipizide have been widely used and studied in terms of pharmacological and antidiabetic effects, and their individual stability has been studied in the literature. However, the drugs' combined stability profiling remains poorly understood, and hence the aim of this study was to investigate the collective stability profiling of different combinations at various controlled conditions. Degradation assessments were carried out on metformin, glipizide and gliclazide by applying a stability-indicating HPLC method that was developed and validated in accordance with ICH guidelines. Glipizide, gliclazide, metformin and the binary mixtures (metformin/glipizide and metformin/gliclazide) were subjected to different forced degradation conditions and were detected at 227 nm by an isocratic separation on an Alltima CN column (250 mm × 4.6 mm × 5µ) utilizing a mobile phase that consists of 20 mM ammonium formate buffer (pH 3.5) and acetonitrile at a ratio of (45:55, v/v). The method is linear (R2 = 0.9999) at the concentration range 2.5-150 µg/ml for metformin and 1.25-150 µg/ml for sulfonylureas respectively and offers a specific and sensitive tool for their determination in <10 min chromatographic run. All drug peaks were sharp and well separated. Stress degradation revealed that metformin has a remarkable sensitivity to alkaline stress, glipizide was more sensitive to thermal degradation while gliclazide exhibited almost full degradation in acidic, alkaline and oxidative stress conditions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。