Abstract
Pyranoanthocyanins exhibit greater bioactivity compared to monomeric anthocyanins, yet the lipid-lowering effects of pyranoanthocyanin Vitisin A, a primary derivative found in aged red wines, have not been extensively studied in vivo. This study evaluated the triglyceride-lowering effects of Vitisin A and its anthocyanin counterpart Cyanidin-3-O-glucoside (C3G) in both free fatty acid -induced HepG2 cells and high-fat diet-fed ApoE-/- mice, with a focus on their roles in lipid metabolism. In vitro, Vitisin A significantly reduced triglyceride levels and lipid accumulation in HepG2 cells compared to C3G at equivalent concentrate. In vivo, dietary supplementation with 100 mg/kg of Vitisin A reduced body weight gain and plasma triglyceride levels by 19.6% and 29.5%, respectively, whereas no significant effects were observed with C3G. Mechanistically, Vitisin A markedly inhibited hepatic de novo lipogenesis (DNL) by activating the AMPK/ACC signaling pathway and downregulating FASN expression. Concurrently, Vitisin A enhanced fatty acid β-oxidation more robustly than C3G by upregulating CPT-1A via AMPK/SIRT1/PGC-1α and PPAR-α/PGC-1α pathways. Both Vitisin A and C3G driving peroxisomal β-oxidation of very-long-chain fatty acids. In summary, Vitisin A demonstrated superior triglyceride-lowering effects compared to C3G, primarily through dual mechanisms of inhibiting hepatic DNL and enhancing fatty acid β-oxidation.
