Background
Recently, much attention has been focused on gaining a better understanding of the different populations of cells within a tumor and their contribution to cancer progression. One of the most commonly used
Conclusions
Using this method we can begin to understand which genes are epigenetically regulated in the invasive population compared to the bulk tumor cells. These aggressive sub-populations of cells may be linked to the cancer stem cell hypothesis, making their patterns of epigenetic regulation very attractive for biomarker analysis.
Results
Differentially methylated genes were determined and select genes were chosen for additional analyses. The non-receptor tyrosine kinase BMX and transcription factor SOX1 were found to play a significant role in invasion. Ingenuity pathway analysis revealed the methylated gene list frequently displayed genes from the IL-6/STAT3 pathway. Cells which have decreased levels of the targets BMX and SOX1 also display loss of STAT3 activity. Finally, using Oncomine, it was determined that more aggressive metastatic prostate cancers in humans also have higher levels of both Stat3 and Sox1. Conclusions: Using this method we can begin to understand which genes are epigenetically regulated in the invasive population compared to the bulk tumor cells. These aggressive sub-populations of cells may be linked to the cancer stem cell hypothesis, making their patterns of epigenetic regulation very attractive for biomarker analysis.
