Probiotics Enhance Coilia nasus Growth Performance and Nutritional Value by Regulating Glucolipid Metabolism via the Gut-Liver Axis

益生菌通过肠肝轴调节糖脂代谢,提高刀鲚的生长性能和营养价值

阅读:7
作者:Qi Mang, Jun Gao, Quanjie Li, Yi Sun, Gangchun Xu, Pao Xu

Abstract

Large-scale intensive feeding triggered reduced growth performance and nutritional value. Exogenous probiotics can promote the growth performance and nutritional value of fish through improving the intestinal microbiota. However, detailed research on the correlation between the intestinal microbiota, growth performance, and nutritional value remains to be elucidated. Therefore, we performed metagenomic and metabolomic analysis to investigate the effects of probiotic addition to basal diet (1.0 × 108 CFU/g) (PF) and water (1.0 × 108 CFU/g) (PW) on the growth performance, muscle nutritional value, intestinal microbiota and their metabolites, and glucolipid metabolism in Coilia nasus. The results showed that FBW, BL, and SGR were enhanced in PF and PW groups. The concentrations of EAAs, TAAs, SFAs, MUFAs, and PUFAs were increased in PF and PW groups. Metagenomic and metabolic analyses revealed that bacterial community structure and metabolism were changed in the PF and PW groups. Moreover, adding probiotics to diet and water increased SCFAs and bile acids in the intestine. The gene expression associated with lipolysis and oxidation (hsl, pparα, cpt1, and acadm) and glycolysis (gck and pfk) was upregulated, while the gene expression associated with lipid synthesis (srebp1, acc, dgat, and elovl6) and gluconeogenesis (g6pca1, g6pca2, and pck) was downregulated in the liver. Correlation analysis displayed that hepatic glucolipid metabolism was regulated through the microbiota-gut-liver axis. Mantel test analysis showed that growth performance and muscle nutritional value were improved by the gut-liver axis. Our findings offered novel insights into the mechanisms that underlie the enhancement of growth performance and nutritional value in C. nasus and other fish by adding probiotics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。