Influence of the Nucleo-Shuttling of the ATM Protein on the Response of Skin Fibroblasts from Marfan Syndrome to Ionizing Radiation

ATM 蛋白核穿梭对马凡氏综合征皮肤成纤维细胞对电离辐射反应的影响

阅读:6
作者:Dagmara Jakubowska, Joëlle Al-Choboq, Laurène Sonzogni, Michel Bourguignon, Dorota Slonina, Nicolas Foray

Abstract

Marfan syndrome (MFS) is an autosomal dominant connective-tissue disorder affecting multiple systems, such as skeletal, cardiovascular, and ocular systems. MFS is predominantly caused by mutations in the FBN1 gene, which encodes the fibrillin-1 protein, crucial for connective-tissue integrity. FBN1 mutations lead to defective fibrillin, resulting in structurally compromised connective tissues. Additionally, these mutations cause aberrant TGF-β expression, contributing to vascular issues and increased susceptibility to radiation-induced fibrosis. Studies about the potential radiosensitivity of MFS are rare and generally limited to case reports. Here, we aimed to investigate the radiation-induced ATM nucleo-shuttling (RIANS) model to explore the molecular and cellular radiation response in fibroblasts from MFS patients. The results showed that the MFS fibroblast cell lines tested are associated with moderate but significant radiosensitivity, high yield of micronuclei, and impaired recognition of DNA double-strand breaks (DSBs) caused by a diminished RIANS. The diminished RIANS is supported by the sequestration of ATM protein in the cytoplasm not only by mutated FBN1 protein but also by overexpressed TGF-β. This report is the first molecular and cellular characterization of the radiation response of MFS fibroblasts and highlights the importance of the FBN1-TGF-β complex after irradiation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。