Microscopic and infrared spectroscopic comparison of the underwater adhesives produced by germlings of the brown seaweed species Durvillaea antarctica and Hormosira banksii

褐藻 Durvillaea antarctica 和 Hormosira banksii 幼体产生的水下粘合剂的显微镜和红外光谱比较

阅读:11
作者:Simone Dimartino, David M Savory, Sara J Fraser-Miller, Keith C Gordon, A James McQuillan

Abstract

Adhesives from marine organisms are often the source of inspiration for the development of glues able to create durable bonds in wet environments. In this work, we investigated the adhesive secretions produced by germlings of two large seaweed species from the South Pacific, Durvillaea antarctica, also named 'the strongest kelp in the word', and its close relative Hormosira banksii The comparative analysis was based on optical and scanning electron microscopy imaging as well as Fourier transform infrared (FTIR) spectroscopy and principal component analysis (PCA). For both species, the egg surface presents peripheral vesicles which are released soon after fertilization to discharge a primary adhesive. This is characterized by peaks representative of carbohydrate molecules. A secondary protein-based adhesive is then secreted in the early developmental stages of the germlings. Energy dispersive X-ray, FTIR and PCA indicate that D. antarctica secretions also contain sulfated moieties, and become cross-linked with time, both conferring strong adhesive and cohesive properties. On the other hand, H. banksii secretions are complemented by the putative adhesive phlorotannins, and are characterized by a simple mechanism in which all constituents are released with the same rate and with no apparent cross-linking. It is also noted that the release of adhesive materials appears to be faster and more copious in D. antarctica than in H. banksii Overall, this study highlights that both quantity and quality of the adhesives matter in explaining the superior attachment ability of D. antarctica.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。