Amalgam plays a dual role in controlling the number of leg muscle progenitors and regulating their interactions with the developing Drosophila tendon

汞合金在控制腿部肌肉祖细胞数量和调节其与发育中的果蝇肌腱的相互作用方面发挥着双重作用

阅读:10
作者:Blandine Moucaud, Elodie Prince, Elia Ragot, Yoan Renaud, Krzysztof Jagla, Guillaume Junion, Cedric Soler

Abstract

Formation of functional organs requires cell-cell communication between different cell lineages and failure in this communication can result in severe developmental defects. Hundreds of possible interacting pairs of proteins are known, but identifying the interacting partners that ensure a specific interaction between 2 given cell types remains challenging. Here, we use the Drosophila leg model and our cell type-specific transcriptomic data sets to uncover the molecular mediators of cell-cell communication between tendon and muscle precursors. Through the analysis of gene expression signatures of appendicular muscle and tendon precursor cells, we identify 2 candidates for early interactions between these 2 cell populations: Amalgam (Ama) encoding a secreted protein and Neurotactin (Nrt) known to encode a membrane-bound protein. Developmental expression and function analyses reveal that: (i) Ama is expressed in the leg myoblasts, whereas Nrt is expressed in adjacent tendon precursors; and (ii) in Ama and Nrt mutants, myoblast-tendon cell-cell association is lost, leading to tendon developmental defects. Furthermore, we demonstrate that Ama acts downstream of the FGFR pathway to maintain the myoblast population by promoting cell survival and proliferation in an Nrt-independent manner. Together, our data pinpoint Ama and Nrt as molecular actors ensuring early reciprocal communication between leg muscle and tendon precursors, a prerequisite for the coordinated development of the appendicular musculoskeletal system.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。