Increased Expression and Amplification of blaKPC-2 Contributes to Resistance to Ceftazidime/Avibactam in a Sequence Type 11 Carbapenem-Resistant Klebsiella pneumoniae Strain

blaKPC-2 表达和扩增增加导致序列类型 11 碳青霉烯耐药肺炎克雷伯菌菌株对头孢他啶/阿维巴坦产生耐药性

阅读:6
作者:Xinhui Li #, Jisheng Zhang #, Chengru Yang, Jie Li, Jianmin Wang, Wan Huang, Lingyi Zeng, Xushan Liang, Wenzhang Long, Xiaoli Zhang

Abstract

Ceftazidime/avibactam (CAZ/AVI) is regarded as an effective alternative antibiotic for the clinical treatment of Klebsiella pneumoniae carbapenemase (KPC)-producing isolates. As resistance has been reported in some strains, it is critical to understand the key mechanisms contributing to the acquired resistance to CAZ/AVI. From January 2018 to April 2020, 127 KPC-producing carbapenem-resistant Klebsiella pneumoniae strains (CRKPs) were isolated at a university hospital in Chongqing, China, and 25 strains showed reduced susceptibility to CAZ/AVI. All reduced-susceptibility CRKPs were deficient in Ompk35 and Ompk36 porins, and 24 strains had a premature termination at amino acid position 63 in Ompk35 and 134 to 135 glycine and aspartic acid (GD) insertion in OmpK36, while the blaKPC-2 expression level showed no significant difference compared to that of strain BAA-1705. Four reduced-susceptibility strains evolved resistance under selective pressure of CAZ/AVI with the blaKPC-2 expression level increased, and two of these strains had mutations in the Ω-loop. The study found a strain of CRKP55 with changes in the resistance phenotype during conjugation, evolving from reduced sensitivity to high-level resistance to CAZ/AVI. Through plasmid sequencing and reverse transcription-quantitative PCR, it was speculated that insertion sequence (IS)26-mediated blaKPC-2 gene amplification caused the MIC value change in the conjugant JKP55. Our findings illustrated the potential of CAZ/AVI resistance under antibiotic stress and demonstrated that IS26 may mediate blaKPC-2 replication transposition, leading to high-level resistance during horizontal gene transfer. Investigation of CAZ/AVI resistance mechanisms may offer a unique opportunity to study the horizontal evolutionary trajectories of K. pneumoniae high-risk clones. IMPORTANCE Klebsiella pneumoniae carbapenemase (KPC) production is the most common mechanism of K. pneumoniae resistance to carbapenems in China. Currently, CAZ/AVI is considered a potential alternative therapeutic option for infections caused by these isolates. However, there have been increasing reports of resistant or reduced-sensitivity strains since the approval of this agent. In this study, resistance to CAZ/AVI was induced under drug-selective pressure and was caused by blaKPC-2 overexpression and/or substitutions in the Ω-loop of KPC. Additionally, it was demonstrated that a conjugative plasmid carrying blaKPC-2 could transfer horizontally between species, and perhaps, IS26-derived tandem amplification of blaKPC-2 during this period led to high-level resistance to CAZ/AVI. Our research suggests that IS26-mediated resistance evolution may have important implications in guiding clinical antibiotic use.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。