DNA-PK inhibition enhances neoantigen diversity and increases T cell responses to immunoresistant tumors

DNA-PK抑制可增强新抗原多样性并提高T细胞对免疫耐受肿瘤的反应。

阅读:1
作者:Allison J Nielsen ,Gabriella K Albert ,Amelia Sanchez ,Jiangli Chen ,Jing Liu ,Andres S Davalos ,Degui Geng ,Xander Bradeen ,Jennifer D Hintzsche ,William Robinson ,Martin McCarter ,Carol Amato ,Richard Tobin ,Kasey Couts ,Breelyn A Wilky ,Eduardo Davila

Abstract

Effective antitumor T cell activity relies on the expression and MHC presentation of tumor neoantigens. Tumor cells can evade T cell detection by silencing the transcription of antigens or by altering MHC machinery, resulting in inadequate neoantigen-specific T cell activation. We identified the DNA-protein kinase inhibitor (DNA-PKi) NU7441 as a promising immunomodulator that reduced immunosuppressive proteins, while increasing MHC-I expression in a panel of human melanoma cell lines. In tumor-bearing mice, combination therapy using NU7441 and the immune adjuvants stimulator of IFN genes (STING) ligand and the CD40 agonist NU-SL40 substantially increased and diversified the neoantigen landscape, antigen-presenting machinery, and, consequently, substantially increased both the number and repertoire of neoantigen-reactive, tumor-infiltrating lymphocytes (TILs). DNA-PK inhibition or KO promoted transcription and protein expression of various neoantigens in human and mouse melanomas and induced sensitivity to immune checkpoint blockade (ICB) in resistant tumors. In patients, protein kinase, DNA-activated catalytic subunit (PRKDC) transcript levels were inversely correlated with MHC-I expression and CD8+ TILs but positively correlated with increased neoantigen loads and improved responses to ICB. These studies suggest that inhibition of DNA-PK activity can restore tumor immunogenicity by increasing neoantigen expression and presentation and broadening the neoantigen-reactive T cell population.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。