The autocatalytic release of a putative RNA virus transcription factor from its polyprotein precursor involves two paralogous papain-like proteases that cleave the same peptide bond

假定的 RNA 病毒转录因子从其多聚蛋白前体中自动催化释放,涉及两种旁系同源木瓜蛋白酶样蛋白酶,它们可裂解相同的肽键

阅读:4
作者:J Ziebuhr, V Thiel, A E Gorbalenya

Abstract

The largest replicative protein of coronaviruses is known as p195 in the avian infectious bronchitis virus (IBV) and p210 (p240) in the mouse hepatitis virus. It is autocatalytically released from the precursors pp1a and pp1ab by one zinc finger-containing papain-like protease (PLpro) in IBV and by two paralogous PLpros, PL1pro and PL2pro, in mouse hepatitis virus. The PLpro-containing proteins have been recently implicated in the control of coronavirus subgenomic mRNA synthesis (transcription). By using comparative sequence analysis, we now show that the respective proteins of all sequenced coronaviruses are flanked by two conserved PLpro cleavage sites and share a complex (multi)domain organization with PL1pro being inactivated in IBV. Based upon these predictions, the processing of the human coronavirus 229E p195/p210 N terminus was studied in detail. First, an 87-kDa protein (p87), which is derived from a pp1a/pp1ab region immediately upstream of p195/p210, was identified in human coronavirus 229E-infected cells. Second, in vitro synthesized proteins representing different parts of pp1a were autocatalytically processed at the predicted site. Surprisingly, both PL1pro and PL2pro cleaved between p87 and p195/p210. The PL1pro-mediated cleavage was slow and significantly suppressed by a non-proteolytic activity of PL2pro. In contrast, PL2pro, whose proteolytic activity and specificity were established in this study, cleaved the same site efficiently in the presence of the upstream domains. Third, a correlation was observed between the overlapping substrate specificities and the parallel evolution of PL1pro and PL2pro. Collectively, our results imply that the p195/p210 autoprocessing mechanisms may be conserved among coronaviruses to an extent not appreciated previously, with PL2pro playing a major role. A large subset of coronaviruses may employ two proteases to cleave the same site(s) and thus regulate the expression of the viral genome in a unique way.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。