Molecular basis for CesT recognition of type III secretion effectors in enteropathogenic Escherichia coli

肠致病性大肠杆菌中 CesT 识别 III 型分泌效应物的分子基础

阅读:4
作者:Dustin J Little, Brian K Coombes

Abstract

Enteropathogenic Escherichia coli (EPEC) use a needle-like injection apparatus known as the type III secretion system (T3SS) to deliver protein effectors into host cells. Effector translocation is highly stratified in EPEC with the translocated intimin receptor (Tir) being the first effector delivered into the host. CesT is a multi-cargo chaperone that is required for the secretion of Tir and at least 9 other effectors. However, the structural and mechanistic basis for differential effector recognition by CesT remains unclear. Here, we delineated the minimal CesT-binding region on Tir to residues 35-77 and determined the 2.74 Å structure of CesT bound to an N-terminal fragment of Tir. Our structure revealed that the CesT-binding region in the N-terminus of Tir contains an additional conserved sequence, distinct from the known chaperone-binding β-motif, that we termed the CesT-extension motif because it extends the β-sheet core of CesT. This motif is also present in the C-terminus of Tir that we confirmed to be a unique second CesT-binding region. Point mutations that disrupt CesT-binding to the N- or C-terminus of Tir revealed that the newly identified carboxy-terminal CesT-binding region was required for efficient Tir translocation into HeLa cells and pedestal formation. Furthermore, the CesT-extension motif was identified in the N-terminal region of NleH1, NleH2, and EspZ, and mutations that disrupt this motif reduced translocation of these effectors, and in some cases, overall effector stability, thus validating the universality of this CesT-extension motif. The presence of two CesT-binding regions in Tir, along with the presence of the CesT-extension motif in other highly translocated effectors, may contribute to differential cargo recognition by CesT.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。