Greenhouse Gas Emissions from Respiratory Treatments: Results from the SABA CARBON International Study

呼吸治疗产生的温室气体排放:SABA CARBON 国际研究结果

阅读:10
作者:Ashraf Alzaabi, John P Bell, Felicia Montero-Arias, David B Price, David J Jackson, Hao-Chien Wang, Nigel Budgen, Hisham Farouk, Ekaterina Maslova

Conclusions

Globally, SABA use/overuse is widespread and is the greatest contributor to the carbon footprint of respiratory treatment, regardless of the economic status of countries. Implementing evidence-based treatment recommendations, personalising treatment and reducing healthcare inequities, especially in LMICs, may improve disease control and patient outcomes, thereby reducing SABA overuse and associated carbon emissions beyond SABA use alone.

Methods

Two data sources were utilised to evaluate the carbon contribution of inhalers to respiratory care. To quantify greenhouse gas (GHG) emissions associated with total inhaler use across all respiratory indications, inhaler sales data were obtained from IQVIA MIDAS® (Q4/2018-Q3/2019) and compared by dose to prevent confounding from differences in canister actuation counts. GHG emissions associated with SABA overuse in asthma were evaluated using prescription and self-reported over-the-counter purchase data from the SABA use IN Asthma (SABINA) III study (2019-2020). Inhaler-related GHG emissions were quantified using published data and product life cycle assessments.

Results

SABA accounted for > 50% of total inhaler use and inhaler-related emissions in most countries analysed. The total SABA-related emissions were estimated at 2.7 million tonnes carbon dioxide equivalents, accounting for 70% of total inhaler-related emissions. Among the countries, regions and economies analysed, per capita SABA use and associated emissions were higher in Australia, the Middle East and high-income countries. Most SABA prescriptions for asthma (> 90%) were given to patients already overusing SABA. Conclusions: Globally, SABA use/overuse is widespread and is the greatest contributor to the carbon footprint of respiratory treatment, regardless of the economic status of countries. Implementing evidence-based treatment recommendations, personalising treatment and reducing healthcare inequities, especially in LMICs, may improve disease control and patient outcomes, thereby reducing SABA overuse and associated carbon emissions beyond SABA use alone.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。