Site-Specific and Stable Conjugation of the SARS-CoV-2 Receptor-Binding Domain to Liposomes in the Absence of Any Other Adjuvants Elicits Potent Neutralizing Antibodies in BALB/c Mice

在没有任何其他佐剂的情况下,SARS-CoV-2 受体结合结构域与脂质体的位点特异性和稳定结合可在 BALB/c 小鼠中引发有效的中和抗体

阅读:7
作者:Wei-Yun Wholey, Sekou-Tidiane Yoda, Wei Cheng

Abstract

Understanding immune responses toward viral infection will be useful for potential therapeutic intervention and offer insights into the design of prophylactic vaccines. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the COVID-19 pandemic. To understand the complex immune responses toward SARS-CoV-2 infection, here we developed a method to express and purify the recombinant and engineered viral receptor-binding domain (RBD) to more than 95% purity. We could encapsulate RNA molecules into the interior of a virion-sized liposome. We conjugated the purified RBD proteins onto the surface of the liposome in an orientation-specific manner with defined spatial densities. Both the encapsulation of RNAs and the chemical conjugation of the RBD protein on liposome surfaces were stable under physiologically relevant conditions. In contrast to soluble RBD proteins, a single injection of RBD-conjugated liposomes alone, in the absence of any other adjuvants, elicited RBD-specific B cell responses in BALB/c mice, and the resulting animal sera could potently neutralize HIV-1 pseudovirions that displayed the SARS-CoV-2 spike proteins. These results validate these supramolecular structures as a novel and effective tool to mimic the structure of enveloped viruses, the use of which will allow systematic dissection of the complex B cell responses to SARS-CoV-2 infection.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。