Clonal dynamics limits detection of selection in tumour xenograft CRISPR/Cas9 screens

克隆动力学限制了肿瘤异种移植 CRISPR/Cas9 筛选中的选择检测

阅读:6
作者:Tet Woo Lee, Francis W Hunter, Peter Tsai, Cristin G Print, William R Wilson, Stephen M F Jamieson

Abstract

Transplantable in vivo CRISPR/Cas9 knockout screens, in which cells are edited in vitro and inoculated into mice to form tumours, allow evaluation of gene function in a cancer model that incorporates the multicellular interactions of the tumour microenvironment. To improve our understanding of the key parameters for success with this method, we investigated the choice of cell line, mouse host, tumour harvesting timepoint and guide RNA (gRNA) library size. We found that high gRNA (80-95%) representation was maintained in a HCT116 subline transduced with the GeCKOv2 whole-genome gRNA library and transplanted into NSG mice when tumours were harvested at early (14 d) but not late time points (38-43 d). The decreased representation in older tumours was accompanied by large increases in variance in gRNA read counts, with notable expansion of a small number of random clones in each sample. The variable clonal dynamics resulted in a high level of 'noise' that limited the detection of gRNA-based selection. Using simulated datasets derived from our experimental data, we show that considerable reductions in count variance would be achieved with smaller library sizes. Based on our findings, we suggest a pathway to rationally design adequately powered in vivo CRISPR screens for successful evaluation of gene function.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。