Research on the Hot Deformation Process of A100 Steel Based on High-Temperature Rheological Behavior and Microstructure

基于高温流变行为和微观组织的A100钢热变形过程研究

阅读:6
作者:Chaoyuan Sun, Yi Qin, Yang Liu, Guiqian Xiao, Jiansheng Zhang, Jie Zhou

Abstract

To obtain the optimal hot deformation process, the rheological and dynamic recrystallization behaviors of A100 steel were researched through isothermal compression tests. Firstly, a Hensel-Spittel constitutive model was established based on the stress-strain curves. Secondly, dynamic recrystallization percentage and grain size models were established to identify the necessary conditions for complete dynamic recrystallization. Finally, microstructural analysis was employed to validate the accuracy of the recrystallization model. The results indicate that the flow stress is highly sensitive to both the strain rate and the temperature, and the HS model demonstrates a high predictive accuracy, with a correlation coefficient of 0.9914. There exists a contradictory relationship between decreasing the average grain size and increasing the recrystallization percentage. The higher the percentage of dynamic recrystallization, the larger the average grain size tends to be. This situation should be avoided when devising the actual processing procedures. The optimal hot working processes for achieving complete dynamic recrystallization and a smaller average grain size are as follows: a strain equal to or greater than 0.6, a temperature between 1193 and 1353 K, and a strain rate between 0.1 and 1 s-1.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。