Effect of S-Allyl -L-Cysteine on MCF-7 Cell Line 3-Mercaptopyruvate Sulfurtransferase/Sulfane Sulfur System, Viability and Apoptosis

S-烯丙基-L-半胱氨酸对MCF-7细胞系3-巯基丙酮酸硫转移酶/硫烷硫系统、活力及凋亡的影响

阅读:6
作者:Patrycja Bronowicka-Adamska, Anna Bentke, Małgorzata Lasota, Maria Wróbel

Abstract

The S-Allyl-L-cysteine ​​(SAC) component of aged garlic extract (AGE) is proven to have anticancer, antihepatotoxic, neuroprotective and neurotrophic properties. -Cystathionase (CTH), cystathionine β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (MPST) are involved in H2S/sulfane sulfur endogenous formation from L-cysteine. The aim of the study was to determine the effect of SAC on MCF-7 cells survival and apoptosis, which is a widely known approach to reduce the number of cancer cells. An additional goal of this paper was to investigate the effect of SAC on the activity and expression of enzymes involved in H2S production. The experiments were carried out in the human breast adenocarcinoma cell line MCF-7. Changes in the cell viability were determined by MTT assay. Cell survival was determined by flow cytometry (FC). Changes in enzymes expression were analyzed using Western blot. After 24 h and 48 h incubation with 2245 µM SAC, induction of late apoptosis was observed. A decrease in cell viability was observed with increasing SAC concentration and incubation time. SAC had no significant cytotoxic effect on the MCF-7 cells upon all analyzed concentrations. CTH, MPST and CBS expression were confirmed in non-treated MCF-7 cells. Significant decrease in MPST activity at 2245 µM SAC after 24 h and 48 h incubation vs. 1000 µM SAC was associated with decrease in sulfane sulfur levels. The presented results show promising SAC effects regarding the deterioration of the MCF-7 cells' condition in reducing their viability through the downregulation of MPST expression and sulfate sulfur level reduction.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。