Neutrophil Membrane-Derived Nanovesicles Alleviate Inflammation To Protect Mouse Brain Injury from Ischemic Stroke

中性粒细胞膜衍生的纳米囊泡可减轻炎症,保护小鼠因缺血性中风造成的脑损伤

阅读:8
作者:Xinyue Dong, Jin Gao, Can Yang Zhang, Christopher Hayworth, Marcos Frank, Zhenjia Wang

Abstract

Ischemic stroke is an acute and severe neurological disease, resulting in disability and death. Reperfusion to an ischemic brain is a means to reverse brain damage after stroke; however, this causes secondary tissue damage induced by inflammation responses, called ischemia/reperfusion (I/R) injury. Adhesion of neutrophils to endothelial cells underlies the initiation of inflammation in I/R. Inspired by this interaction, we report a drug delivery system comprised of neutrophil membrane-derived nanovesicles loaded with Resolvin D2 (RvD2) that can enhance resolution of inflammation, thus protecting brain damage during ischemic stroke. In the study, the middle cerebral artery occlusion (MCAO) mouse model was developed to mimic ischemic stroke. Using intravital microscopy of a live mouse brain, we visualized the binding of nanovesicles to inflamed brain vasculature for delivery of therapeutics to ischemic stroke lesions in real-time. We also observed that RvD2-loaded nanovesicles dramatically decreased inflammation in ischemic stroke and improved mouse neurological functions. Our study provides a strategy to inhibit neuroinflammation using neutrophil-derived nanovesicles for ischemic stroke therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。