Sources of bias and limitations of thrombinography: inner filter effect and substrate depletion at the edge of failure algorithm

血栓形成术的偏倚来源和局限性:内滤效应和失效边缘算法的底物耗竭

阅读:7
作者:Joseph W Jackson, Colin Longstaff, Samuel A Woodle, William C Chang, Mikhail V Ovanesov

Background

Fluorogenic thrombin generation (TG) is a global hemostasis assay that provides an overall representation of hemostasis potential. However, the accurate detection of thrombin activity in plasma may be affected by artifacts inherent to the assay-associated fluorogenic substrate. The significance of the fluorogenic artifacts or their corrections has not been studied in hemophilia treatment applications.

Conclusions

Correction algorithms may be effective in situations of moderate fluorogenic substrate artifacts inherent to highly procoagulant samples, but correction may not be required under typical conditions for hemophilia treatment studies if TG parameters can be normalized to a reference plasma sample.

Methods

We sought to investigate TG in hemophilia plasma samples under typical and worst-case fluorogenic artifact conditions and assess the performance of artifact correction algorithms. Severe hemophilic plasma with or without added Factor VIII (FVIII) was evaluated using commercially available and in-house TG reagents, instruments, and software packages. The inner filter effect (IFE) was induced by spiking elevated amounts of fluorophore 7-amino-4-methylcoumarin (AMC) into plasma prior to the TG experiment. Substrate consumption was modeled by adding decreasing amounts of Z-Gly-Gly-Arg-AMC (ZGGR-AMC) to plasma or performing TG in antithrombin deficient plasma.

Results

All algorithms corrected the AMC-induced IFE and antithrombin-deficiency induced substrate consumption up to a certain level of either artifact (edge of failure) upon which TG results were not returned or overestimated. TG values in FVIII deficient (FVIII-DP) or supplemented plasma were affected similarly. Normalization of FVIII-DP resulted in a more accurate correction of substrate artifacts than algorithmic methods. Conclusions: Correction algorithms may be effective in situations of moderate fluorogenic substrate artifacts inherent to highly procoagulant samples, but correction may not be required under typical conditions for hemophilia treatment studies if TG parameters can be normalized to a reference plasma sample.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。