Cyclooxygenase production of PGE2 promotes phagocyte control of A. fumigatus hyphal growth in larval zebrafish

环氧合酶产生的 PGE2 促进吞噬细胞控制斑马鱼幼虫中烟曲霉菌丝的生长

阅读:5
作者:Savini Thrikawala, Mengyao Niu, Nancy P Keller, Emily E Rosowski

Abstract

Invasive aspergillosis is a common opportunistic infection, causing >50% mortality in infected immunocompromised patients. The specific molecular mechanisms of the innate immune system that prevent pathogenesis of invasive aspergillosis in immunocompetent individuals are not fully understood. Here, we used a zebrafish larva-Aspergillus infection model to identify cyclooxygenase (COX) enzyme signaling as one mechanism that promotes host survival. Larvae exposed to the pan-COX inhibitor indomethacin succumb to infection at a significantly higher rate than control larvae. COX signaling is both macrophage- and neutrophil-mediated. However, indomethacin treatment has no effect on phagocyte recruitment. Instead, COX signaling promotes phagocyte-mediated inhibition of germination and invasive hyphal growth. Increased germination and invasive hyphal growth is also observed in infected F0 crispant larvae with mutations in genes encoding for COX enzymes (ptgs2a/b). Protective COX-mediated signaling requires the receptor EP2 and exogenous prostaglandin E2 (PGE2) rescues indomethacin-induced decreased immune control of fungal growth. Collectively, we find that COX signaling activates the PGE2-EP2 pathway to increase control A. fumigatus hyphal growth by phagocytes in zebrafish larvae.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。