The chloride channel cystic fibrosis transmembrane conductance regulator (CFTR) controls cellular quiescence by hyperpolarizing the cell membrane during diapause in the crustacean Artemia

氯通道囊性纤维化跨膜传导调节器 (CFTR) 通过在甲壳类动物卤虫的休眠期间使细胞膜超极化来控制细胞静止

阅读:5
作者:An-Qi Li, Zhan-Peng Sun, Xu Liu, Jin-Shu Yang, Feng Jin, Lin Zhu, Wen-Huan Jia, Stephanie De Vos, Gilbert Van Stappen, Peter Bossier, Wei-Jun Yang

Abstract

Cellular quiescence, a reversible state in which growth, proliferation, and other cellular activities are arrested, is important for self-renewal, differentiation, development, regeneration, and stress resistance. However, the physiological mechanisms underlying cellular quiescence remain largely unknown. In the present study, we used embryos of the crustacean Artemia in the diapause stage, in which these embryos remain quiescent for prolonged periods, as a model to explore the relationship between cell-membrane potential (Vmem) and quiescence. We found that Vmem is hyperpolarized and that the intracellular chloride concentration is high in diapause embryos, whereas Vmem is depolarized and intracellular chloride concentration is reduced in postdiapause embryos and during further embryonic development. We identified and characterized the chloride ion channel protein cystic fibrosis transmembrane conductance regulator (CFTR) of Artemia (Ar-CFTR) and found that its expression is silenced in quiescent cells of Artemia diapause embryos but remains constant in all other embryonic stages. Ar-CFTR knockdown and GlyH-101-mediated chemical inhibition of Ar-CFTR produced diapause embryos having a high Vmem and intracellular chloride concentration, whereas control Artemia embryos released free-swimming nauplius larvae. Transcriptome analysis of embryos at different developmental stages revealed that proliferation, differentiation, and metabolism are suppressed in diapause embryos and restored in postdiapause embryos. Combined with RNA sequencing (RNA-Seq) of GlyH-101-treated MCF-7 breast cancer cells, these analyses revealed that CFTR inhibition down-regulates the Wnt and Aurora Kinase A (AURKA) signaling pathways and up-regulates the p53 signaling pathway. Our findings provide insight into CFTR-mediated regulation of cellular quiescence and Vmem in the Artemia model.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。