Muscle-specific knockout of PKC-lambda impairs glucose transport and induces metabolic and diabetic syndromes

肌肉特异性敲除 PKC-lambda 会损害葡萄糖转运并诱发代谢和糖尿病综合征

阅读:7
作者:Robert V Farese, Mini P Sajan, Hong Yang, Pengfei Li, Steven Mastorides, William R Gower Jr, Sonali Nimal, Cheol Soo Choi, Sheene Kim, Gerald I Shulman, C Ronald Kahn, Ursula Braun, Michael Leitges

Abstract

Obesity, the metabolic syndrome, and type 2 diabetes mellitus (T2DM) are major global health problems. Insulin resistance is frequently present in these disorders, but the causes and effects of such resistance are unknown. Here, we generated mice with muscle-specific knockout of the major murine atypical PKC (aPKC), PKC-lambda, a postulated mediator for insulin-stimulated glucose transport. Glucose transport and translocation of glucose transporter 4 (GLUT4) to the plasma membrane were diminished in muscles of both homozygous and heterozygous PKC-lambda knockout mice and were accompanied by systemic insulin resistance; impaired glucose tolerance or diabetes; islet beta cell hyperplasia; abdominal adiposity; hepatosteatosis; elevated serum triglycerides, FFAs, and LDL-cholesterol; and diminished HDL-cholesterol. In contrast to the defective activation of muscle aPKC, insulin signaling and actions were intact in muscle, liver, and adipocytes. These findings demonstrate the importance of aPKC in insulin-stimulated glucose transport in muscles of intact mice and show that insulin resistance and resultant hyperinsulinemia owing to a specific defect in muscle aPKC is sufficient to induce abdominal obesity and other lipid abnormalities of the metabolic syndrome and T2DM. These findings are particularly relevant because humans who have obesity, impaired glucose tolerance, and T2DM reportedly have defective activation and/or diminished levels of muscle aPKC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。