Abstract
CACNA1C encodes the α1c subunit of the L-type Ca2+ channel, Cav1.2. Ventricular myocytes from haploinsufficient Cacna1c (Cacna1c+/-) rats exhibited reduced expression of Cav1.2 but an apparently normal sarcolemmal Ca2+ influx with an impaired response to sympathetic stress. We tested the hypothesis that the altered phosphorylation of Cav1.2 might underlie the sarcolemmal Ca2+ influx phenotype in Cacna1c+/- myocytes using immunoblotting of the left ventricular (LV) tissue from Cacna1c+/- versus wildtype (WT) hearts. Activation of cAMP-dependent protein kinase A (PKA) increases L-type Ca2+ current and phosphorylates Cav1.2 at serine-1928. Using an antibody directed against this phosphorylation site, we observed elevated phosphorylation of Cav1.2 at serine-1928 in LV myocardium from Cacna1c+/- rats under basal conditions (+110% versus WT). Sympathetic stress was simulated by isoprenaline (100 nM) in Langendorff-perfused hearts. Isoprenaline increased the phosphorylation of serine-1928 in Cacna1c+/- LV myocardium by ≈410%, but the increase was significantly smaller than in WT myocardium (≈650%). In conclusion, our study reveals altered PKA-dependent phosphorylation of Cav1.2 with elevated phosphorylation of serine-1928 under basal conditions and a diminished phosphorylation reserve during β-adrenergic stimulation. These alterations in the phosphorylation of Cav1.2 may explain the apparently normal sarcolemmal Ca2+ influx in Cacna1c+/- myocytes under basal conditions as well as the impaired response to sympathetic stimulation.
