Mechanisms of Listeria monocytogenes Disinfection with Benzalkonium Chloride: From Molecular Dynamics to Kinetics of Time-Kill Curves

苯扎氯铵对单核细胞增生李斯特菌消毒的机制:从分子动力学到时间-杀灭曲线动力学

阅读:8
作者:Martín Pérez-Rodríguez, Marta López Cabo, Eva Balsa-Canto, Míriam R García

Abstract

Unravelling the mechanisms of action of disinfectants is essential to optimise dosing regimes and minimise the emergence of antimicrobial resistance. In this work, we examined the mechanisms of action of a commonly used disinfectant-benzalkonium chloride (BAC)-over a significant pathogen-L. monocytogenes-in the food industry. For that purpose, we used modelling at multiple scales, from the cell membrane to cell population inactivation. Molecular modelling revealed that the integration of the BAC into the membrane requires three phases: (1) the approaching of BAC to the cellular membrane, (2) the absorption of BAC to its surface, and (3) the integration of the compound into the lipid bilayer, where it remains at least for several nanoseconds, probably destabilising the membrane. We hypothesised that the equilibrium of adsorption, although fast, was limiting for sufficiently large BAC concentrations, and a kinetic model was derived to describe time-kill curves of a large population of cells. The model was tested and validated with time series data of free BAC decay and time-kill curves of L. monocytogenes at different inocula and BAC dose concentrations. The knowledge gained from the molecular simulation plus the proposed kinetic model offers the means to design novel disinfection processes rationally.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。