Cognate DNA Recognition by Engrailed Homeodomain Involves a Conformational Change Controlled via an Electrostatic-Spring-Loaded Latch

Engrailed Homeodomain 的同源 DNA 识别涉及通过静电弹簧闩锁控制的构象变化

阅读:5
作者:Nicola D'Amelio, Benjamin Tanielian, Mourad Sadqi, Pilar López-Navajas, Victor Muñoz

Abstract

Transcription factors must scan genomic DNA, recognize the cognate sequence of their control element(s), and bind tightly to them. The DNA recognition process is primarily carried out by their DNA binding domains (DBD), which interact with the cognate site with high affinity and more weakly with any other DNA sequence. DBDs are generally thought to bind to their cognate DNA without changing conformation (lock-and-key). Here, we used nuclear magnetic resonance and circular dichroism to investigate the interplay between DNA recognition and DBD conformation in the engrailed homeodomain (enHD), as a model case for the homeodomain family of eukaryotic DBDs. We found that the conformational ensemble of enHD is rather flexible and becomes gradually more disordered as ionic strength decreases following a Debye-Hückel's dependence. Our analysis indicates that enHD's response to ionic strength is mediated by a built-in electrostatic spring-loaded latch that operates as a conformational transducer. We also found that, at moderate ionic strengths, enHD changes conformation upon binding to cognate DNA. This change is of larger amplitude and somewhat orthogonal to the response to ionic strength. As a consequence, very high ionic strengths (e.g., 700 mM) block the electrostatic-spring-loaded latch and binding to cognate DNA becomes lock-and-key. However, the interplay between enHD conformation and cognate DNA binding is robust across a range of ionic strengths (i.e., 45 to 300 mM) that covers the physiologically-relevant conditions. Therefore, our results demonstrate the presence of a mechanism for the conformational control of cognate DNA recognition on a eukaryotic DBD. This mechanism can function as a signal transducer that locks the DBD in place upon encountering the cognate site during active DNA scanning. The electrostatic-spring-loaded latch of enHD can also enable the fine control of DNA recognition in response to transient changes in local ionic strength induced by variate physiological processes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。