Fingolimod ameliorates chronic experimental autoimmune neuritis by modulating inflammatory cytokines and Akt/mTOR/NF-κB signaling

芬戈莫德通过调节炎症细胞因子和 Akt/mTOR/NF-κB 信号传导改善慢性实验性自身免疫性神经炎

阅读:7
作者:Yuan Feng, Fang Feng, Shuyi Pan, Jiewen Zhang, Wei Li

Conclusion

Our data showed that fingolimod could improve the disease course, alleviate the decrease in inflammation, and reduce proinflammatory cytokines through the Akt/mTOR/NF-κB axis in c-EAN rats, which could be beneficial for the development of CIDP-related research.

Methods

Chronic experimental autoimmune neuritis (c-EAN) was induced by immunizing Lewis rats with the S-palm P0(180-199) peptide, and then the treatment group was intraperitoneally injected with fingolimod (1 mg/kg) daily. Hematoxylin and eosin staining was used to assess the severity of nerve injury. Immunohistochemistry staining showed that fingolimod's anti-inflammatory effects on c-EAN rats might be realized through the NF-κB signaling pathway. Tumor necrosis factor-α (TNF-α), interferon-γ (INF-γ), interleukin-1beta (IL-1β), interleukin 6 (IL-6), inducible nitric oxide synthase (iNOS), and intercellular adhesion molecule-1 (ICAM-1) were measured to evaluate the inflammation levels, and pAkt, p-S6, and p-p65 were used to measure the abundance of downstream activation markers to determine whether the Akt/mTOR/NF-κB signaling pathway was activated in the c-EAN model.

Objective

Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is an immune-mediated disease that targets the myelin sheaths of the peripheral nerves. Fingolimod is a sphingosine 1 phosphate (S1P) receptor antagonist with a high affinity for S1P receptors through the Akt-mTOR pathway, and prior research has suggested that it might be helpful in autoimmune illnesses.

Results

Fingolimod treatment reduced the inflammatory reaction and the expression of NF-κB in sciatic nerves. It also decreased the mRNA levels of the proinflammatory cytokines TNF-α, IFN-γ, IL-1β, IL-6, iNOS, and ICAM-1 and pAkt, p-S6, and p-p65, representing the Akt/mTOR/NF-κB signaling pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。