Molecular interactions between gelatin-derived carbon quantum dots and Apo-myoglobin: Implications for carbon nanomaterial frameworks

明胶衍生的碳量子点与脱辅基肌红蛋白之间的分子相互作用:对碳纳米材料框架的影响

阅读:16
作者:Shima Masoudi Asil, Mahesh Narayan

Abstract

Carbon nanomaterials (CNMs), including carbon quantum dots (CQDs), have found widespread use in biomedical research due to their low toxicity, chemical tunability, and tailored applications. Yet, there exists a gap in our understanding of the molecular interactions between biomacromolecules and these novel carbon-centered platforms. Using gelatin-derived CQDs as a model CNM, we have examined the impact of this exemplar nanomaterial on apo-myoglobin (apo-Mb), an oxygen-storage protein. Intrinsic fluorescence measurements revealed that the CQDs induced conformational changes in the tertiary structure of native, partially unfolded, and unfolded states of apo-Mb. Titration with CQDs also resulted in significant changes in the secondary structural elements in both native (holo) and apo-Mb, as evidenced by the circular dichroism (CD) analyses. These changes suggested a transition from isolated helices to coiled-coils during the loss of the helical structure of the apo-protein. Infra-red spectroscopic data further underscored the interactions between the CQDs and the amide backbone of apo-myoglobin. Importantly, the CQDs-driven structural perturbations resulted in compromised heme binding to apo-myoglobin and, therefore, potentially can attenuate oxygen storage and diffusion. However, a cytotoxicity assay demonstrated the continued viability of neuroblastoma cells exposed to these carbon nanomaterials. These results, for the first time, provide a molecular roadmap of the interplay between carbon-based nanomaterial frameworks and biomacromolecules.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。