Sulfation of chondroitin sulfate proteoglycans is necessary for proper Indian hedgehog signaling in the developing growth plate

硫酸软骨素蛋白聚糖的硫酸化是印度刺猬信号在发育生长板中正常传导的必要条件

阅读:6
作者:Mauricio Cortes, Alexis T Baria, Nancy B Schwartz

Abstract

In contrast to the functional role of heparan sulfate proteoglycans (HSPGs), the importance of chondroitin sulfate proteoglycans (CSPGs) in modulating signaling pathways involving hedgehog proteins, wingless-related proteins and fibroblast growth factors remains unclear. To elucidate the importance of sulfated CSPGs in signaling paradigms required for endochondral bone formation, the brachymorphic (bm) mouse was used as a model for undersulfated CSPGs. The bm mouse exhibits a postnatal chondrodysplasia caused by a mutation in the phosphoadenosine phosphosulfate (PAPS) synthetase (Papss2) gene, leading to reduced levels of PAPS and undersulfated proteoglycans. Biochemical analysis of the glycosaminoglycan (GAG) content in bm cartilage via sulfate labeling and fluorophore-assisted carbohydrate electrophoresis revealed preferential undersulfation of chondroitin chains (CS) and normal sulfation of heparan sulfate chains. In situ hybridization and immunohistochemical analysis of bm limb growth plates showed diminished Indian hedgehog (Ihh) signaling and abnormal Ihh protein distribution in the extracellular matrix. Consistent with the decrease in hedgehog signaling, BrdU incorporation exhibited a significant reduction in chondrocyte proliferation. Direct measurements of Ihh binding to defined GAG chains demonstrated that Ihh interacts with CS, particularly chondroitin-4-sulfate. Furthermore, co-immunoprecipitation experiments showed that Ihh binds to the major cartilage CSPG aggrecan via its CS chains. Overall, this study demonstrates an important function for CSPGs in modulating Ihh signaling in the developing growth plate, and highlights the importance of carbohydrate sulfation in regulating growth factor signaling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。