Metalloproteinase inhibitors regulate biliary progenitor cells through sDLK1 in organoid models of liver injury

金属蛋白酶抑制剂通过 sDLK1 调节肝损伤类器官模型中的胆道祖细胞

阅读:6
作者:Virginie Defamie, Kazeera Aliar, Soumili Sarkar, Foram Vyas, Ronak Shetty, Swami Reddy Narala, Hui Fang, Sanjay Saw, Pirashaanthy Tharmapalan, Otto Sanchez, Jennifer J Knox, Paul D Waterhouse, Rama Khokha

Abstract

Understanding cell fate regulation in the liver is necessary to advance cell therapies for hepatic disease. Liver progenitor cells (LPCs) contribute to tissue regeneration after severe hepatic injury, yet signals instructing progenitor cell dynamics and fate are largely unknown. Tissue inhibitor of metalloproteinases 1 (TIMP1) and TIMP3 control the sheddases ADAM10 and ADAM17, key for NOTCH activation. Here we uncover the role of the TIMP/ADAM/NOTCH/DLK1 axis in LPC maintenance and cholangiocyte specification. Combined TIMP1/TIMP3 loss in vivo caused abnormal portal triad stoichiometry accompanied by collagen deposits, dysregulated Notch signaling, and increased soluble DLK1. The MIC1-1C3+CD133+CD26- biliary progenitor population was reduced following acute CCl4 or chronic DDC liver injury and in aged TIMP-deficient livers. Single-cell RNA sequencing data interrogation and RNAscope identified portal mesenchymal cells coexpressing ADAM17/DLK1 as enzymatically equipped to process DLK1 and direct LPC differentiation. Specifically, TIMP-deficient biliary fragment-derived organoids displayed increased propensity for cholangiocyte differentiation. ADAM17 inhibition reduced Sox9-mediated cholangiocyte differentiation, prolonging organoid growth and survival, whereas WT organoids treated with soluble DLK1 triggered Sox9 expression and cholangiocyte specification in mouse and patient-derived liver organoids. Thus, metalloproteinase inhibitors regulate instructive signals for biliary cell differentiation and LPC preservation within the portal niche, providing a new basis for cell therapy strategies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。