Uncoupling stress granule assembly and translation initiation inhibition

解偶联应激颗粒组装与翻译起始抑制

阅读:5
作者:Sophie Mokas, John R Mills, Cristina Garreau, Marie-Josée Fournier, Francis Robert, Prabhat Arya, Randal J Kaufman, Jerry Pelletier, Rachid Mazroui

Abstract

Cytoplasmic stress granules (SGs) are specialized regulatory sites of mRNA translation that form under different stress conditions known to inhibit translation initiation. The formation of SG occurs via two pathways; the eukaryotic initiation factor (eIF) 2alpha phosphorylation-dependent pathway mediated by stress and the eIF2alpha phosphorylation-independent pathway mediated by inactivation of the translation initiation factors eIF4A and eIF4G. In this study, we investigated the effects of targeting different translation initiation factors and steps in SG formation in HeLa cells. By depleting eIF2alpha, we demonstrate that reduced levels of the eIF2.GTP.Met-tRNAi(Met) ternary translation initiation complexes is sufficient to induce SGs. Likewise, reduced levels of eIF4B, eIF4H, or polyA-binding protein, also trigger SG formation. In contrast, depletion of the cap-binding protein eIF4E or preventing its assembly into eIF4F results in modest SG formation. Intriguingly, interfering with the last step of translation initiation by blocking the recruitment of 60S ribosome either with 2-(4-methyl-2,6-dinitroanilino)-N-methylpropionamideis or through depletion of the large ribosomal subunits protein L28 does not induce SG assembly. Our study identifies translation initiation steps and factors involved in SG formation as well as those that can be targeted without induction of SGs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。