Advanced glycation end products of DNA: quantification of N2-(1-Carboxyethyl)-2'-deoxyguanosine in biological samples by liquid chromatography electrospray ionization tandem mass spectrometry

DNA 的晚期糖基化终产物:通过液相色谱电喷雾电离串联质谱法对生物样品中的 N2-(1-羧乙基)-2'-脱氧鸟苷进行定量分析

阅读:6
作者:Timothy Synold, Bixin Xi, Gerald E Wuenschell, Daniel Tamae, James L Figarola, Samuel Rahbar, John Termini

Abstract

Methylglyoxal (MG) and related alpha-oxoaldehydes react with proteins, lipids, and DNA to give rise to covalent adducts known as advanced glycation end products (AGEs). Elevated levels of AGEs have been implicated in the pathological complications of diabetes, uremia, Alzheimer's disease, and possibly cancer. There is therefore widespread interest in developing sensitive methods for the in vivo measurement of AGEs as prognostic biomarkers and for treatment monitoring. The two diastereomeric MG-DNA adducts of N(2)-(1-carboxyethyl)-2'-deoxyguanosine (CEdG) are the primary glycation products formed in DNA; however, accurate assessment of their distribution in vivo has not been possible since there is no readily available quantitative method for CEdG determination in biological samples. To address these issues, we have developed a sensitive and quantitative liquid chromatography electrospray ionization tandem mass spectrometry assay using the stable isotope dilution method with an (15)N(5)-CEdG standard. Methods for CEdG determination in urine or tissue extracted DNA are described. Changes in urinary CEdG in diabetic rats in response to oral administration of the AGE inhibitor LR-90 are used to demonstrate the potential utility of the method for treatment monitoring. Both stereoisomeric CEdG adducts were detected in a human breast tumor and normal adjacent tissue at levels of 3-12 adducts/10(7) dG, suggesting that this lesion may be widely distributed in vivo. Strategies for dealing with artifactual adduct formation due to oxoaldehyde generation during DNA isolation and enzymatic workup procedures are described.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。