Conclusions
In mice who survived experimental sepsis, mesenchymal stromal cell therapy protected blood-brain barrier integrity, reduced astrogliosis and neuroinflammation, as well as improved cognition and behavior.
Results
At day 1, clinical score and plasma levels of inflammatory mediators were increased in cecal ligation and puncture mice. Mesenchymal stromal cells did not alter clinical score or survival rate, but reduced levels of systemic interleukin-1β, interleukin-6, and monocyte chemoattractant protein-1. At day 15, survivor mice completed a battery of cognitive and behavioral tasks. Cecal ligation and puncture mice exhibited spatial and aversive memory deficits and anxiety-like behavior. These effects may be related to increased blood-brain barrier permeability, with altered tight-junction messenger RNA expression, increased brain levels of inflammatory mediators, and astrogliosis (induced at day 3). Mesenchymal stromal cells mitigated these cognitive and behavioral alterations, as well as reduced blood-brain barrier dysfunction, astrocyte activation, and interleukin-1β, interleukin-6, tumor necrosis factor-α, and interleukin-10 levels in vivo. In cultured primary astrocytes stimulated with lipopolysaccharide, conditioned media from mesenchymal stromal cells reduced astrogliosis, interleukin-1β, and monocyte chemoattractant protein-1, suggesting a paracrine mechanism of action. Conclusions: In mice who survived experimental sepsis, mesenchymal stromal cell therapy protected blood-brain barrier integrity, reduced astrogliosis and neuroinflammation, as well as improved cognition and behavior.
