Digital rheometer twins: Learning the hidden rheology of complex fluids through rheology-informed graph neural networks

数字流变仪双胞胎:通过流变学信息图神经网络学习复杂流体的隐藏流变学

阅读:6
作者:Mohammadamin Mahmoudabadbozchelou, Krutarth M Kamani, Simon A Rogers, Safa Jamali

Abstract

SignificanceScience-based data-driven methods that can describe the rheological behavior of complex fluids can be transformative across many disciplines. Digital rheometer twins, which are developed here, can significantly reduce the cost, time, and energy required to characterize complex fluids and predict their future behavior. This is made possible by combining two different methods of informing neural networks with the rheological underpinnings of a system, resulting in quantitative recovery of a gel's response to different flow protocols. The platform developed here is general enough that it can be extended to areas well beyond complex fluids modeling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。