Glucagon-Like Peptide 1 Receptor (Glp1r) Deficiency Does Not Appreciably Alter Airway Inflammation or Gut-Lung Microbiome Axis in a Mouse Model of Obese Allergic Airways Disease and Bariatric Surgery

胰高血糖素样肽 1 受体 (Glp1r) 缺乏不会明显改变肥胖过敏性气道疾病和减肥手术小鼠模型中的气道炎症或肠肺微生物组轴

阅读:17
作者:Yeon Ji Kim #, Victoria M Ihrie #, Pixu Shi, Mark D Ihrie, Jack T Womble, Anna Hill Meares, Joshua A Granek, Claudia K Gunsch, Jennifer L Ingram

Conclusion

Herein, GLP-1R deficiency had surprisingly little effect on host gut and lung microbiomes and health, despite recent studies suggesting that GLP-1 receptor agonists are protective against lung inflammation.

Methods

Male and female Glp1r-deficient (Glp1r-/- ) and replete (Glp1r+/+) mice were administered high fat diet (HFD) to induce obesity with simultaneous intranasal challenge with house dust mite (HDM) allergen to model allergic airway disease with appropriate controls. Mice on HFD received either no surgery, sham surgery, or vertical sleeve gastrectomy (VSG) on week 10 and were sacrificed on week 13. Data were collected with regard to fecal and lung tissue microbiome, lung histology, metabolic markers, and respiratory inflammation.

Purpose

High body mass index (≥30 kg/m2) is associated with asthma severity, and nearly 40% of asthma patients exhibit obesity. Furthermore, over 40% of patients with obesity and asthma that receive bariatric surgery no longer require asthma medication. Increased levels of glucagon-like peptide 1 (GLP-1) occur after bariatric surgery, and recent studies suggest that GLP-1 receptor (GLP-1R) signaling may regulate the gut microbiome and have anti-inflammatory properties in the lung. Thus, we hypothesized that increased GLP-1R signaling following metabolic surgery in obese and allergen-challenged mice leads to gut/lung microbiome alterations, which together contribute to improved features of allergic airways disease.

Results

HFD led to metabolic imbalance characterized by lower GLP-1 and higher leptin levels, increased glucose intolerance, and alterations in gut microbiome composition. Prevalence of bacteria associated with short chain fatty acid (SCFA) production, namely Bifidobacterium, Lachnospiraceae UCG-001, and Parasutterella, was reduced in mice fed HFD and positively associated with serum GLP-1 levels. Intranasal HDM exposure induced airway inflammation. While Glp1r-/- genotype affected fecal microbiome beta diversity metrics, its effect was limited.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。