Bmi deficiency causes oxidative stress and intervertebral disc degeneration which can be alleviated by antioxidant treatment

BMI不足会导致氧化应激和椎间盘退变,而抗氧化剂治疗可以缓解这些症状。

阅读:1
作者:Qunhu Zhang ,Jie Li ,You Li ,Hui Che ,Ying Chen ,Jianghui Dong ,Cory J Xian ,Dengshun Miao ,Liping Wang ,Yongxin Ren

Abstract

The transcriptional repressor Bmi-1 is involved in cell-cycle regulation and cell senescence, the deficiency of which has been shown to cause oxidative stress. This study investigated whether Bmi-1 deficiency plays a role in promoting disc degeneration and the effect of treatment with antioxidant N-acetylcysteine (NAC) on intervertebral disc degeneration. Bmi-1-/- mice were treated with the antioxidant NAC, supplied in drinking water (Bmi-1-/- +NAC). For in vitro experiments, mouse intervertebral discs were cultured under low oxygen tension and serum-limiting conditions in the presence of tumour necrosis factor α and interleukin 1β in order to mimic degenerative insult. Disc metabolism parameters in these in vitro and in vivo studies were evaluated by histopathological, immunohistochemical and molecular methods. Bmi-1-/- mice showed lower collagen Ⅱ and aggrecan levels and higher collagen Ⅹ levels than wild-type and Bmi-1-/- +NAC mice. Bmi-1-/- mice showed significantly lower superoxide dismutase (SOD)-1, SOD-2, glutathione peroxidase (GPX)-1 and GPX-3 levels than their wild-type littermates and Bmi-1-/- + NAC mice. Relative to Bmi-1-/- mice, the control and Bmi-1-/- +NAC mice showed significantly lower p16, p21, and p53 levels. These results demonstrate that Bmi-1 plays an important role in attenuating intervertebral disc degeneration in mice by inhibiting oxidative stress and cell apoptosis. Keywords: Bmi-1; N-acetylcysteine; cell apoptosis; intervertebral disc degeneration; oxidative stress.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。