MiR-186-5p Downregulates NAMPT and Functions as a Potential Therapeutic Target for Sepsis-Induced Coagulation Disorders

MiR-186-5p 下调 NAMPT 并作为脓毒症诱发凝血障碍的潜在治疗靶点

阅读:10
作者:Hao Shen, Keliang Xie, Min Peng, Xiaoye Wang

Conclusion

MiR-186-5p inhibited sepsis-induced coagulation disorders via targeting NAMPT and inactivating NF-κB pathway.

Methods

Thirty-four sepsis patients and 34 respiratory infection/pneumonia patients were selected in the present study. Polymicrobial sepsis model was created by cecal ligation and puncture (CLP). The mRNA expression was detected by qRT-PCR. Western blot was utilized to measure protein expression. Thromborel S Reagent was applied to measure the prothrombin time (PT). Platelet count of blood was measured via LH 780. ELISA kits were utilized to evaluate the fibrinogen and PAI-1 concentration.

Purpose

Present study is aimed to explore the role of miR-186-5p in sepsis-induced coagulation disorders and molecular mechanisms.

Results

MiR-186-5p expression was lower and nicotinamide phosphoribosyltransferase (NAMPT) mRNA expression was higher in sepsis patients in contrast to control group. Coagulation time was markedly prolonged and platelet count was markedly decreased in CLP mice. In addition, fibrinogen concentration was obviously lower and PAI-1 concentration was obviously higher in CLP mice. MiR-186-5p mimic obviously decreased coagulation time and PAI-1 concentration, while raised platelet count and fibrinogen concentration. Targetscan predicted miR-186-5p might directly regulates NAMPT, and luciferase reporter assay verified this prediction. In addition, miR-186-5p mimic obviously inhibited the mRNA expression of NAMPT. Knockdown of NAMPT improved coagulation dysfunction in sepsis. Overexpression of NAMPT reversed the improvement effect of miR-186-5p on coagulation dysfunction. MiR-186-5p mimic markedly inhibited NF-κB pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。