Kinetic characterization of high-activity mutants of human butyrylcholinesterase for the cocaine metabolite norcocaine

人类丁酰胆碱酯酶高活性突变体对可卡因代谢物去甲可卡因的动力学表征

阅读:6
作者:Max Zhan, Shurong Hou, Chang-Guo Zhan, Fang Zheng

Abstract

It has been known that cocaine produces its toxic and physiological effects through not only cocaine itself, but also norcocaine formed from cocaine oxidation catalysed by microsomal CYP (cytochrome P450) 3A4 in the human liver. The catalytic parameters (kcat and Km) of human BChE (butyrylcholinesterase) and its three mutants (i.e. A199S/S287G/A328W/Y332G, A199S/F227A/S287G/A328W/E441D and A199S/F227A/S287G/A328W/Y332G) for norcocaine have been characterized in the present study for the first time and compared with those for cocaine. On the basis of the obtained kinetic data, wild-type human BChE has a significantly lower catalytic activity for norcocaine (kcat=2.8 min(-1), Km=15 μM and kcat/Km=1.87 × 10(5) M(-1)·min(-1)) compared with its catalytic activity for (-)-cocaine. The BChE mutants examined in the present study have considerably improved catalytic activities against both cocaine and norcocaine compared with the wild-type enzyme. Within the enzymes examined in the present study, the A199S/F227A/S287G/A328W/Y332G mutant (CocH3) is identified as the most efficient enzyme for hydrolysing both cocaine and norcocaine. CocH3 has a 1080-fold improved catalytic efficiency for norcocaine (kcat=2610 min(-1), Km=13 μM and kcat/Km=2.01 × 10(8) M(-1)·min(-1)) and a 2020-fold improved catalytic efficiency for cocaine. It has been demonstrated that CocH3 as an exogenous enzyme can rapidly metabolize norcocaine, in addition to cocaine, in rats. Further kinetic modelling has suggested that CocH3 with an identical concentration with that of the endogenous BChE in human plasma can effectively eliminate both cocaine and norcocaine in a simplified kinetic model of cocaine abuse.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。