Conclusions
RLA has a protective effect against cellular damage induced by 6-OHDA and MPTP. The neuroprotective mechanism of RLA may be associated with improvement of mitochondrial function and autophagy. Therefore, RLA may serve as a promising potential adjuvant for PD treatment.
Methods
Cell viability and apoptosis were detected using CCK8 and Annexin V-FITC assays, respectively. Intracellular reactive oxygen species (ROS) were detected by fluorescence staining. ELISA assays were performed to detect the levels of dopamine and α-synuclein. To evaluate the effects of RLA on mitochondrial function, cytotoxicity, ATP levels, and mitochondrial gene expression were assayed. Additionally, the expression levels of autophagy-related proteins, including Parkin, PINK1, p62, ATG12, and LC3, were analyzed by western blot, and cell autophagy was visualized by immunofluorescence.
Objective
Parkinson's disease (PD) is a common neurodegenerative disease. This study aimed to investigate the effects of the R form of α-lipoic acid (RLA) in cellular models of PD induced by 6-hydroxydopamine (6-OHDA) or 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP).
Results
RLA increased cell viability and decreased apoptosis, intracellular ROS, and cytotoxicity, and induced cell autophagy in PD models induced by 6-OHDA and MPTP. RLA also reversed the decreased dopamine and increased α-synuclein expression induced by 6-OHDA and MPTP. The mitochondrial regulatory protein PGC-1α was significantly up-regulated by RLA. The expression levels of autophagy-related proteins, including Parkin, PINK1, p62, and ATG12, were down-regulated after RLA treatment, while LC3 expression was up-regulated. Conclusions: RLA has a protective effect against cellular damage induced by 6-OHDA and MPTP. The neuroprotective mechanism of RLA may be associated with improvement of mitochondrial function and autophagy. Therefore, RLA may serve as a promising potential adjuvant for PD treatment.
