P-glycoprotein deficiency at the blood-brain barrier increases amyloid-beta deposition in an Alzheimer disease mouse model

血脑屏障的 P 糖蛋白缺乏会增加阿尔茨海默病小鼠模型中的淀粉样β蛋白沉积

阅读:5
作者:John R Cirrito, Rashid Deane, Anne M Fagan, Michael L Spinner, Maia Parsadanian, Mary Beth Finn, Hong Jiang, Julie L Prior, Abhay Sagare, Kelly R Bales, Steven M Paul, Berislav V Zlokovic, David Piwnica-Worms, David M Holtzman

Abstract

Accumulation of amyloid-beta (Abeta) within extracellular spaces of the brain is a hallmark of Alzheimer disease (AD). In sporadic, late-onset AD, there is little evidence for increased Abeta production, suggesting that decreased elimination from the brain may contribute to elevated levels of Abeta and plaque formation. Efflux transport of Abeta across the blood-brain barrier (BBB) contributes to Abeta removal from the brain. P-glycoprotein (Pgp) is highly expressed on the luminal surface of brain capillary endothelial cells and contributes to the BBB. In Pgp-null mice, we show that [I]Abeta40 and [I]Abeta42 microinjected into the CNS clear at half the rate that they do in WT mice. When amyloid precursor protein-transgenic (APP-transgenic) mice were administered a Pgp inhibitor, Abeta levels within the brain interstitial fluid significantly increased within hours of treatment. Furthermore, APP-transgenic, Pgp-null mice had increased levels of brain Abeta and enhanced Abeta deposition compared with APP-transgenic, Pgp WT mice. These data establish a direct link between Pgp and Abeta metabolism in vivo and suggest that Pgp activity at the BBB could affect risk for developing AD as well as provide a novel diagnostic and therapeutic target.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。