Impact of the Histidine-Triazole and Tryptophan-Pyrene Exchange in the WHW Peptide: Cu(II) Binding, DNA/RNA Interactions and Bioactivity

WHW 肽中组氨酸-三唑和色氨酸-芘交换的影响:Cu(II) 结合、DNA/RNA 相互作用和生物活性

阅读:12
作者:Ivona Krošl, Marta Košćak, Karla Ribičić, Biserka Žinić, Dragomira Majhen, Ksenija Božinović, Ivo Piantanida

Abstract

In three novel peptidoids based on the tryptophan-histidine-tryptophan (WHW) peptide, the central histidine was replaced by Ala-(triazole), and two derivatives also had one tryptophan replaced with pyrene-alkyls of different lengths and flexibility. Pyrene analogues show strong fluorescence at 480-500 nm, attributed to intramolecular exciplex formation with tryptophan. All three peptidoids bind Cu2+ cation in water with strong affinity, with Trp- Ala-(triazole)-Trp binding comparably to the parent WHW, and the pyrene analogues even stronger, demonstrating that replacement of histidine with triazole in peptides does not hamper Cu2+ coordination. The studied peptidoids strongly bind to ds-DNA and ds-RNA, whereby their complexes with Cu2+ exhibit distinctively different interactions in comparison to metal-free analogues, particularly in the stabilization of ds-DNA against thermal denaturation. The pyrene peptidoids efficiently enter living cells with no apparent cytotoxic effect, whereby their red-shifted emission compared to the parent pyrene allows intracellular confocal microscopy imaging, showing accumulation in cytoplasmic organelles. However, irradiation with 350 nm light resulted in evident antiproliferative effect on cells treated with micromolar concentrations of the pyrene analogues, presumably attributed to pyrene-induced production of singlet oxygen and consecutive cellular damage.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。