Heterotrimeric Gα-subunit regulates flower and fruit development in CLAVATA signaling pathway in cucumber

异源三聚体Gα亚基调控黄瓜CLAVATA信号通路中的花果发育

阅读:16
作者:Lijie Han, Yafei Huang, Chuang Li, Di Tian, Daixi She, Min Li, Zhongyi Wang, Jiacai Chen, Liu Liu, Shaoyun Wang, Weiyuan Song, Liming Wang, Chaoheng Gu, Tao Wu, Jianyu Zhao, Zhaoyang Zhou, Xiaolan Zhang

Abstract

Flowers and fruits are the reproductive organs in plants and play essential roles in natural beauty and the human diet. CLAVATA (CLV) signaling has been well characterized as regulating floral organ development by modulating shoot apical meristem (SAM) size; however, the signaling molecules downstream of the CLV pathway remain largely unknown in crops. Here, we found that functional disruption of CsCLV3 peptide and its receptor CsCLV1 both resulted in flowers with extra organs and stumpy fruits in cucumber. A heterotrimeric G protein α-subunit (CsGPA1) was shown to interact with CsCLV1. Csgpa1 mutant plants derived from gene editing displayed significantly increased floral organ numbers and shorter and wider fruits, a phenotype resembling that of Csclv mutants in cucumber. Moreover, the SAM size was enlarged and the longitudinal cell size of fruit was decreased in Csgpa1 mutants. The expression of the classical stem cell regulator WUSCHEL (WUS) was elevated in the SAM, while the expression of the fruit length stimulator CRABS CLAW (CRC) was reduced in the fruit of Csgpa1 mutants. Therefore, the Gα-subunit CsGPA1 protein interacts with CsCLV1 to inhibit floral organ numbers but promote fruit elongation, via repressing CsWUS expression and activating CsCRC transcription in cucumber. Our findings identified a new player in the CLV signaling pathway during flower and fruit development in dicots, increasing the number of target genes for precise manipulation of fruit shape during crop breeding.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。