Staphylococcus aureus modulates the activity of acetyl-Coenzyme A synthetase (Acs) by sirtuin-dependent reversible lysine acetylation

金黄色葡萄球菌通过依赖 Sirtuin 的可逆赖氨酸乙酰化调节乙酰辅酶 A 合成酶 (Acs) 的活性

阅读:5
作者:Rachel M Burckhardt, Brandi A Buckner, Jorge C Escalante-Semerena

Abstract

Lysine acylation is a posttranslational modification used by cells of all domains of life to modulate cellular processes in response to metabolic stress. The paradigm for the role of lysine acylation in metabolism is the acetyl-coenzyme A synthetase (Acs) enzyme. In prokaryotic and eukaryotic cells alike, Acs activity is downregulated by acetylation and reactivated by deacetylation. Proteins belonging to the bacterial GCN5-related N-acetyltransferase (bGNAT) superfamily acetylate the epsilon amino group of an active site lysine, inactivating Acs. A deacetylase can remove the acetyl group, thereby restoring activity. Here we show the Acs from Staphylococcus aureus (SaAcs) activates acetate and weakly activates propionate, but does not activate >C3 organic acids or dicarboxylic acids (e.g. butyrate, malonate and succinate). SaAcs activity is regulated by AcuA (SaAcuA); a type-IV bGNAT. SaAcuA can acetylate or propionylate SaAcs reducing its activity by >90% and 95% respectively. SaAcuA also succinylated SaAcs, with this being the first documented case of a bacterial GNAT capable of succinylation. Inactive SaAcsAc was deacetylated (hence reactivated) by the NAD+ -dependent (class III) sirtuin protein deacetylase (hereafter SaCobB). In vivo and in vitro evidence show that SaAcuA and SaCobB modulate the level of SaAcs activity in S. aureus.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。