Proteomics Analysis of Three Different Strains of Mycobacterium tuberculosis under In vitro Hypoxia and Evaluation of Hypoxia Associated Antigen's Specific Memory T Cells in Healthy Household Contacts

体外缺氧条件下三株结核分枝杆菌的蛋白质组学分析及健康家庭接触者缺氧相关抗原特异性记忆T细胞的评估

阅读:4
作者:Santhi Devasundaram, Akilandeswari Gopalan, Sulochana D Das, Alamelu Raja

Abstract

In vitro mimicking conditions are thought to reflect the environment experienced by Mycobacterium tuberculosis inside the host granuloma. The majority of in vitro dormancy experimental models use laboratory-adapted strains H37Rv or Erdman instead of prevalent clinical strains involved during disease outbreaks. Thus, we included the most prevalent clinical strains (S7 and S10) of M. tuberculosis from south India in addition to H37Rv for our in vitro oxygen depletion (hypoxia) experimental model. Cytosolic proteins were prepared from hypoxic cultures, resolved by two-dimensional electrophoresis and protein spots were characterized by mass spectrometry. In total, 49 spots were characterized as over-expressed or newly emergent between the three strains. Two antigens (ESAT-6, Lpd) out of the 49 characterized spots were readily available in recombinant form in our lab. Hence, these two genes were overexpressed, purified and used for in vitro stimulation of whole blood collected from healthy household contacts (HHC) and active pulmonary tuberculosis patients (PTB). Multicolor flow cytometry analysis showed high levels of antigen specific CD4(+) central memory T cells in the circulation of HHC compared to PTB (p < 0.005 for ESAT-6 and p < 0.0005 for Lpd). This shows proteins that are predicted to be up regulated during in vitro hypoxia in most prevalent clinical strains would indicate possible potential immunogens. In vitro hypoxia experiments with most prevalent clinical strains would also elucidate the probable true representative antigens involved in adaptive mechanisms.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。