Three-dimensional reconstruction of human cystic fibrosis transmembrane conductance regulator chloride channel revealed an ellipsoidal structure with orifices beneath the putative transmembrane domain

人类囊性纤维化跨膜传导调节器氯通道的三维重建揭示了假定跨膜结构域下方有孔的椭圆形结构

阅读:6
作者:Kazuhiro Mio, Toshihiko Ogura, Muneyo Mio, Hiroyasu Shimizu, Tzyh-Chang Hwang, Chikara Sato, Yoshiro Sohma

Abstract

The cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel is a membrane-integral protein that belongs to an ATP-binding cassette superfamily. Mutations in the CFTR gene cause cystic fibrosis in which salt, water, and protein transports are defective in various tissues. Here we expressed wild-type human CFTR as a FLAG-fused protein in HEK293 cells heterologously and purified it in three steps: anti-FLAG and wheat germ agglutinin affinity chromatographies and size exclusion chromatography. The stoichiometry of the protein was analyzed using various biochemical approaches, including chemical cross-linking, blue-native PAGE, size exclusion chromatography, and electron microscopy (EM) observation of antibody-decorated CFTR. All these data support a dimeric assembly of CFTR. Using 5,039 automatically selected particles from negatively stained EM images, the three-dimensional structure of CFTR was reconstructed at 2-nm resolution assuming a 2-fold symmetry. CFTR, presumably in a closed state, was shown to be an ellipsoidal particle with dimensions of 120 x 106 x 162 A. It comprises a small dome-shaped extracellular and membrane-spanning domain and a large cytoplasmic domain with orifices beneath the putative transmembrane domain. EM observation of CFTR.anti-regulatory domain antibody complex confirmed that two regulatory domains are located around the bottom end of the larger oval cytoplasmic domain.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。